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Abstract: Advanced 3D scanning technologies enable us to obtain dense and accurate surface 
sample point sets. From sufficiently dense sample point set, Crust algorithm, which is based on 
Voronoi diagram and its dual Delaunay triangulation, can reconstruct a triangle mesh that is 
topologically valid and convergent to the original surface. However, the algorithm is restricted in 
the practical application because of its long running time, and when the point cloud must not be 
noisy, the surface reconstructed is not good. Surfaces are often reconstructed from unorganized 
point sets with noise, so denoising is an essential step in creating perfect point-sampled models. A 
novel surface reconstruction algorithm is proposed. Firstly, this paper determines if one point is the 
noise or not by the ellipsoid criterion. After acquiring new point sets being less noisy, we smooth 
the remains noise by mean shift point clouds denoising method. Experiments show that our method 
can smooth the noise efficiently. Secondly, a non-uniformly sampling method is used to resample 
the input data set according to the local feature size before reconstruction. Finally, the surface is 
reconstructed by crust algorithm. In this way, the speed of reconstruction is increased for noisy 
points without losing the details we need. 

1. Introduction 
Reconstructing 3D surfaces from point samples is a well studied problem in computer graphics. 

It allows fitting of scanned data, filling of surface holes, and remeshing of existing models. 
In recent years, there have been a series of papers to solve the original surface reconstruction 

problem using Delaunay-based approach without handling with the sharp feature. Hoppe et al.[1] 
highlighted the importance of addressing the surface reconstruction problem from only a set of 
sample points obtained  from the original surface by using signed distance function and tangent 
planes to serve as local linear approximation to the surface followed by the contour tracing 
algorithm, to derive the original surface. Edelsbrunner and Mucke[2] designed the α-shape 
algorithm using a more refined sculpting strategy. Amenta, Bern and Kamvysselis[3] proposed the 
first algorithm (called crust) which provides theoretical guarantees on the reconstructed surface. 
Then Amenta et al.[4] designed a co-cone algorithm , which is more efficient and simpler than the 
original crust algorithm. Several more followup results using similar Delaunay-based approach are 
the power crust algorithm of Amenta et al.[5], the extended co-cone algorithms by Dey et al.[6] 
which detects under-sampled region and [7] which reconstruct the surface while leaving no holes, 
and the recent reconstruction algorithm of Yau et al.[8], which uses a robust and efficient 
region-growing algorithm to deal with the surface reconstruction problem. Another approach for 
reconstructing surfaces proceeds in the way to grow a triangulated surface by attaching more new 
triangles successively to the boundary of the current reconstructed surface[9] with different 
geometrical structures.  

The implicit surface approach has also been used to reconstruct surfaces[10] that basically fits 
implicit surfaces to the input points with different criterions to minimize the energy that represent 
different distance functions. These algorithm represent the surface with a set of high degree 
functions instead of discrete triangles and their topology relation. 

Compare to other algorithms, the Crust algorithm is not only simple and direct in theory but also 
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faithful to the original surface. However, Crust algorithm is too slow for many practical applications 
with current computing resource, and it can not reconstruct noisy points effective. 

In this paper, a point cloud denoising method which combines the ellipsoid criterion and mean 
shift filtering approach is proposed in this paper, which can handle the noise and readily be 
formulated for mesh-based geometry and even for general 3D geometry. Firstly, the data points will 
be pre-processed by ellipsoid criterion. For each data point, we determine if it is noise or not by the 
ellipsoid criterion. If the boundary probability is not ‘Interior’, this point is the noise. Most of the 
large-scale noise points can be detected in this step. Then, a non-uniform down sampling method as 
in [11] for large and unorganized point set is presented before surface reconstruction according to 
the local feature size. Finally, the point set is reconstructed by the method of Power Crust. We 
propose a new fast and effective method that not only give good reconstruction to the smooth areas 
of the given surface, but also recovers the sharp features originally existed in the source surface 
model provided that a reasonably nice sampling point cloud is given. 

2. Noise Deleted 
2.1. Neighborhood selection 

A very common definition of local neighborhoods around a point p found in the literature is the k 
neighborhood )( pN k , consisting of the k nearest samples in P to p. This simple definition, though, 
becomes unreliable in areas of varying sampling density. In points lying on the edge of a densely 
sampled region, the k neighborhood will be biased towards the densely sampled region. 

   
(a)ε neighborhood                     (b) k neighborhood (K=3) 

 
(c) 

εkN  and improved                        (d) 
εkN neighborhood (K=6) 

Fig.1. ε neighborhood, k neighborhood, εkN  and improved εkN neighborhood 

This problem can be alleviated somewhat by the )( pN kε neighborhoods. It includes not only the 
k nearest points but also all points inside a small sphere with radius ε. By selecting an appropriate 

ε 
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value for ε, the biasing effect can be reduced, but the neighborhood of points in densely sampled 
regions will contain more points than necessary, increasing the cost of evaluating the ellipsoid 
criteria, which effectively limits the range of a feasible ε. 

To overcome the biasing effect, it therefore typically suffices to include these nearby points in 
the neighborhood.  

{ }k k
x x yN y X y N Nε ε= ∈ ∈ ∨                                                      (1) 

To complete the neighborhood for the critical points, we hence define that if point x is one of 
point y’s neighbors, then point y is considered one of point x ’s.  

In Fig.1 (c) and (d), we can see that the neighborhood is unbiased to the unorganized point data.   
Because of the noisy data points, we consider the extent neighborhood, depending on the noise 

level of the dataset. In this article, we compute the weighted average by the two layer neighbors.  

2.2. Noise deleted ellipsoid criterion  
Gumhold [12] uses the correlation matrix formed by the neighborhood. The eigenvectors and 

eigenvalues of this matrix define a correlation ellipsoid. Its shape, expressed in the ratios of the 
eigenvalues, is used to identify corner, crease and boundary points and also gives an approximation 
to crease and boundary direction. In order to find continuous crease lines, a neighborhood graph on 
the point set is built and its edges are weighted according to the crease probability.  

As noted in [13], ellipsoid criterion of detecting shape probability performs best in the presence 
of noise. The wide spread k-nearest samples neighborhood, denoted as N(p). The shape of the 
correlation ellipsoid of approximates the general form of N(p) the neighboring points.  
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ε is the weighted average of N(pi). Parameters λ1, λ2, λ3 are the eigenvalue of the 
matrix, and unit vectore1, e2, e3 are corresponding eigenvector. We supposeλ1≤λ2≤λ3. 
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321 λλλξ ++= .There are five characteristic situations = {Boundary, Interior, Corner, Line, Ridge}.  

In the case of interior points, the ellipsoid degenerates to a circle and ).
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points are on one hline=(0, 0,1). For boundary points, the ellipsoid becomes an ellipse in the tangent 
plane then ).
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of h span a triangle Δh containing all possible values for h. We now extract classification 
probabilities tt~  for each shape. 

Nowτt is given as, 

( )t t p tg h hσt = −                                                           (2) 

In the article, we use a Gauss kernel Parameterσt is defined as, 

( )1
2t t hh centroidσ = − ∆                                                     (3) 

Because the different shapes regions overlap. We define the final boundary probability tt~  as, 
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Our algorithm is performed in the following procedures:  
Step1. Give the nearest point number k and the radius ε of a small sphere according to the point 

density.  
Step2. Select one point p i from the point sets and then compute the center location ip  and the 

correlation matrix C I. At the same time we can easily gain the eigenvalues {λ1, λ2, λ3} and the 
eigenvectors {e1, e2, e3}. 

Step3. Collect the relative magnitudes of the eigenvalues in a vector ),,( 321

ξ
λ

ξ
λ

ξ
λ

=ph , with 

321 λλλξ ++= . We computer the center of the triangle centroid (Δh). 
Step4. For five characteristic situations t∈T = {Boundary, Interior, Corner, Line, Ridge}, we 

compute the Gauss kernel gσ , then extract classification probabilities tt~  for each of the shapes 
described above. If eriorint

~t is the maximum of tt~ , t∈{Boundary, Interior, Corner, Line, Ridge}, the 
point is the interior. Otherwise, we define the point is the noise. 

Step5. If there are points in P, go to Step 2. 

3. Surface Reconstruction Algorithm 
3.1. Power crust algorithm 

We assume that the input point set S is a sufficiently dense sample of a smooth surface. 
In Crust algorithm, we can see the main steps are computing the Voronoi diagram of the sample, 

selecting the poles in the Voronoi vertices to estimate the medial axis, then we compute the 
Delaunay triangulation of the combined point set of the samples and poles, in the end we choose the 
triangles whose vertices are all samples to output crust as surface. From the process of the algorithm, 
we can see that the most time-wasting step of Crust algorithm is the computation of 3D Voronoi 
Diagram and Delaunay triangulation. Notice that the number of sample and poles is at most 3n, the 
time complexity of the algorithm is about O(n2)+ O(9n2) , where n is the number of  input points. 
Therefore, there are two ways to reduce the complexity: improve the efficiency of the computation 
of 3D Voronoi Diagram, or decrease the number of points. Voronoi diagram and its dual Delaunay 
triangulation have been studied widely since it was presented in 1936. It is difficult to improve 
efficiency of algorithm in advance. Thus we try the second way. 

Notice that the local feature size is big in featureless area and small in detailed area, Crust does 
not require dense sample everywhere. However, as the surface is unknown, sample device can’t 
know the local feature size of the area it is sampling, it is almost impossible to realize r-sample. If 
we do it manually, on the one hand the sampling process will be quite troublesome, on the other 
hand people can only evaluate how detail the surface is so that the sample can’t be very well 
coincident to the r sample’s requirement. In order to maintain the detail information in the 
reconstructed model, people usually desire the sample as dense as possible. The result is that the 
input point set is often with a great deal of points that are not necessary to correct reconstruction. If 
we discard these points, we can still correctly reconstruct the surface without losing details. In 
addition, the running time of reconstruction will be reduced. 

3.2. Non-uniformly down sampling 
If S is an r-sample of F and p is a point on F, then the distance between p and its nearest sample 

point s is within r · LFS(p). Since every sample is also a point on F, the distance between s and s1 is 
no more than r · LFS(s), where s1 is the nearest point of s in S. 

As show in figure 1, s is a point in S, v is the negative pole of s, s1 is another point in S that d(s, 
s1 ) = rs · LFS(s). Let s be the center and rs · LFS(s) be the radius, we have the ball B1. Let v be the 
center, LFS(s) be the radius, we have another ball B2. In accordance with the definition of local 
feature size, s1 is outside ball B2. Passing through s we make a plane L tangent to F. Because of the 
assumption that the surface is smooth, s1 and B2 must be located the same side of L. From the 
above discussion, we can see that F must be in the shaded region of figure 1 if it is in B1. 
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Fig.2. Down sampling 

There are two factors influencing local feature size – the curvature and proximity of the other 
parts of the surface. However, the second factor can’t affect the local feature size in a small region, 
so we need not take into account the factor in a local area. That is to say, the local feature size is 
inversely proportional to the curvature in the shaded region when r is small enough. 

Let p be a point on the surface in the shaded region, and p' is the intersection of the line pv and 
B2. As we all known, the more flat the surface is, the lower the curvature is. It is apparent that the 
curvature of point p is smaller than that of point p'. Since point p' and s are both on the ball B2, their 
curvatures are the same. Thus, we have LFS(p) ≥ LFS(s) . In addition, on account of that p is in the 
shaded region, we have d(s, p) ≤ d(s, s1 ). As a result, we get d(s, p) ≤rs · LFS(s). As S satisfies the 
requirement for r-sample, rs is less than r. So, we have d(s, p) ≤r · LFS(p). 

Then, we can make the following conclusion: if we can find another point s'∈S that satisfied 
equation d(s, s') ≤r · LFS(p), S is an r-sample of a surface F. Therefore, if we delete all the points in 
the shaded area excepting the farthest one and s itself, the downsampled point set S ' is still an 
r-sample of F, and an r-sample point set is sufficiently dense for correctly reconstruction if r is no 
more than 0.5. Thus, r should be less than 0.5 here. In fact, we obtain good result when r = 0.5. 

Down sampling: 
1) Initial every point in S as unmarked 
2) for(i=0;i<n;i++){ 
3) if si is unmarked{ 
4) dmax=0;m=0 
5) for(j=0;j<n;j++) 
6) if sj is unmarked{ 
7) if d(si, sj) ≤ r· LFS(si){ 
8) marked sj; 
9) if (d(si, sj)<dmax update dmax and m 
10) }} 
11) unmarked sm; 
12) select all the unmarked points as the down sampled point set 

4. Experimental Results and Analysis 
We experiment with the Moai model. Experimental results from improved FCM method base 

noise deleted, down sampling and surface reconstruction are now investigated. Figure 2 illustrates 
the performance of approach in the paper. 
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(a)        (b)        (c)          (d)        (e)        (f) 

Fig.3. Noise deleted and down sampling of Moai model. (a)Original point clouds. (b)Original 
model. (c)Noisy point cloud, the number of the noise is 2500, and the number of the point is 10002. 
(d)Noise deleted by our Robust ellipsoid criterio. (e)Down sampling by our methd, the number of 

the point preserved is 3350. (f)The output of our algorithm running on the Moai model 
Just as our expectation, the density of down sampled point set is varied according to the surface’s 

detail. The samples are still very dense in the region like the eyes and nose of Moai. But in the 
featureless region, such as the body, it is very sparse compare with the original dataset. In the 
example of Stanford bunny the points are reduced relatively uniformly. It is because that the surface 
of bunny does not change very quickly. 

Form the result we also can see that the reduction of data is varied with the different dataset. It is 
relied on the density of the input points: the denser the input data set is, the more points we can 
delete. In the example of Moai, the size of new data set is reduced to about 1/3. 

5. Conclusion 
We have presented a improved method of Robust ellipsoid criterio and non-uniform down 

sampling method for dense and unorganized noisy point set before surface reconstruction according 
to the local feature size. Guaranteeing the topological shape, we use a smaller point set to 
reconstruct the noisy point cloud. As the result, noisy point set can be reconstructed effectively and 
the speed is improved. This method also can be applied in mesh simplification. In fact we can use 
r-sample to define the level of detail for mesh. With the increasing of r, the mesh’s level of detail is 
decreasing. So we can realize mesh simplification by using this down sampling method to build an 
r-sample model with bigger r. 

As the triangles in the plat areas are relatively large, the whole model looks coarse. However, 
Gouraud shading can give us a tolerable visual effect when r is not very big. In addition, if we want 
a more elaborate visual effect, subdivision can be used to get smooth surface. 
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